本次项目完成,对安卓的异步消息处理机制有了更深的了解,在这里总结一下。
Prolouge 先来回顾一下基础,Android中的异步消息处理主要由Message, Handler, MessageQueue和Looper四部分组成。
Message Message主要作为线程之间传递的信息,它可以携带一些数据。它的what字段(一般用来表示消息类型)、arg0、arg1字段可以携带一些整型数据,obj字段可以携带一个对象,并且可以用setData方法传输一个Bundle对象。
Message的创建方法有两种:
1
2
3
Message msg0 = new Message();
Message msg1 = Message.obtain();
Message message = mHandler.obtainMessage();
其中,Handler的obtainMessage方法也是调用了obtain方法:
1
2
3
4
5
6
7
8
* Returns a new {@link android.os.Message Message} from the global message pool. More efficient than
* creating and allocating new instances. The retrieved message has its handler set to this instance (Message.target == this).
* If you don't want that facility, just call Message.obtain() instead.
*/
public final Message obtainMessage () {
return Message.obtain(this );
}
这两种方法的本质区别是,obtain方法直接从消息池中获取Message对象,这样很多时候可以避免创建新对象,减少内存开销,从obtain方法的源码中就能看出这一点:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
*/
public static Message obtain () {
synchronized (sPoolSync) {
if (sPool != null ) {
Message m = sPool;
sPool = m.next;
m.next = null ;
m.flags = 0 ;
sPoolSize--;
return m;
}
}
return new Message();
}
因此,获取Message时尽量使用obtain方法。
Handler Handler用于发送和处理信息,相当于生产者和消费者。Handler通过sendMessage方法将Message传入MessageQueue消息队列,经Looper轮询后将Message传递至handleMessage方法中。
最常见的一个应用就是需要在子线程中处理UI,这时候就需要借助Handler实现。
MessageQueue MessageQueue,顾名思义就是消息队列,它用来存放Handler发送的消息,直到消息被处理。每个线程中只能有一个消息队列。
Looper Looper相当于MessageQueue的监视器。首先调用Looper.loop()方法进入无限循环状态,每当一个新的Message进入MessageQueue,Looper就会轮询,将此Message传递给handleMessage方法。每个线程中只能有一个Looper对象。
底层实现 一个标准的异步处理流程应该是这样:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class LooperThread extends Thread {
public Handler mHandler;
public void run () {
Looper.prepare();
mHandler = new Handler() {
public void handleMessage (Message msg) {
}
};
Looper.loop();
}
}
我们从Handler的构造函数开始分析:
1
2
3
public Handler () {
this (null , false );
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public Handler (Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0 ) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null ) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()" );
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
如果我们直接在子线程中创建Handler,会抛出异常,提示 “Can’t create handler inside thread that has not called Looper.prepare()”,也就是要调用Looper.prepare()方法。根据源码,这是因为子线程的Looper为空所致,而观察prepare方法的源码可知,此方法的作用就是创建一个Looper对象:
1
2
3
4
5
6
7
8
9
10
public static void prepare () {
prepare(true );
}
private static void prepare (boolean quitAllowed) {
if (sThreadLocal.get() != null ) {
throw new RuntimeException("Only one Looper may be created per thread" );
}
sThreadLocal.set(new Looper(quitAllowed));
}
而主线程也没有调用Looper.prepare(),为什么没有崩溃呢?显然是系统自动地帮我们调用了这个方法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
public static void main (String[] args) {
SamplingProfilerIntegration.start();
CloseGuard.setEnabled(false );
Environment.initForCurrentUser();
EventLogger.setReporter(new EventLoggingReporter());
Security.addProvider(new AndroidKeyStoreProvider());
final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
TrustedCertificateStore.setDefaultUserDirectory(configDir);
Process.setArgV0("<pre-initialized>" );
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false );
if (sMainThreadHandler == null ) {
sMainThreadHandler = thread.getHandler();
}
if (false ) {
Looper.myLooper().setMessageLogging(new
LogPrinter(Log.DEBUG, "ActivityThread" ));
}
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited" );
}
其中的Looper.prepareMainLooper()方法最后调用了Looper.prepare()方法,创建了主线程的Looper。而子线程则不会主动创建Looper,必须自己调用方法创建。
创建完了Handler,下一步就是创建Message然后sendMessage了:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public final boolean sendMessage (Message msg) {
return sendMessageDelayed(msg, 0 );
}
public final boolean sendMessageDelayed (Message msg, long delayMillis) {
if (delayMillis < 0 ) {
delayMillis = 0 ;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime (Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null ) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue" );
Log.w("Looper" , e.getMessage(), e);
return false ;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
sendMessage的结果是将此Message入队。注意到MessageQueue中只保存了当前待处理的一个对象,而不是一个集合;出队则是由Looper.loop()进行:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
public static void loop () {
final Looper me = myLooper();
if (me == null ) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread." );
}
final MessageQueue queue = me.mQueue;
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next();
if (msg == null ) {
return ;
}
Printer logging = me.mLogging;
if (logging != null ) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null ) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
出队的逻辑为queue.next(),其逻辑为:如果MessageQueue的待处理消息对象不为空,那么就出队并让下一个消息入队,否则阻塞。消息出队后经由dispatchMessage方法回调,以便在handleMessage中接收到Message并进行处理:
1
2
3
4
5
6
7
8
9
10
11
12
public void dispatchMessage (Message msg) {
if (msg.callback != null ) {
handleCallback(msg);
} else {
if (mCallback != null ) {
if (mCallback.handleMessage(msg)) {
return ;
}
}
handleMessage(msg);
}
}
这就是一个完整的异步消息处理机制,用网上的一幅图总结:
AsyncTask 当然从Android 1.5开始,谷歌就引入了一个更方便使用的AsyncTask类用于处理异步任务,非常轻量级,通过实现其回调函数来实现相应逻辑。比如我写了一个异步读取缓存的Task:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
private static class CacheTask extends AsyncTask <String , Void , User > {
private final WeakReference<Context> mContext;
private CacheTask (Context context) {
mContext = new WeakReference<>(context);
}
@Override
protected User doInBackground (String... params) {
Serializable object = XmlCacheManager.readObject(mContext.get(), "user" );
if (object == null ) {
return null ;
} else {
return (User) object;
}
}
@Override
protected void onPostExecute (User info) {
super .onPostExecute(info);
if (info != null ) {
mContext.get().mInfo = info;
mContext.get().mErrorLayout.setType(AppConstant.HIDE_ERROR_LAYOUT);
} else {
mContext.get().mErrorLayout.setType(AppConstant.NETWORK_ERROR_LAYOUT);
}
mContext.get().updateUI();
}
}
在此逻辑中,doInBackground方法用于执行具体的缓存读取,而onPostExecute方法用于通知UI更新任务的结果(即更新UI)。其实AsyncTask底层也是利用上边的异步消息机制实现的,只不过它封装地非常好,免去了开发者自己写Message和Handler的环节,减少编码量。
粗略看了一下AsyncTask的源码,发现其的底层实现用了各种JUC的东西,以后有时间再研究研究它的源码。